333. The Crystal Structure of Tetrakisthioacetamidecopper(1)

 Chloride.
Abstract

By Mary R. Truter and K. W. Rutherford. Three-dimensional X-ray crystal-structure analysis of the complex, $\mathrm{Cu}\left(\mathrm{S}: \mathrm{CMe} \cdot \mathrm{NH}_{2}\right)_{4}{ }^{+} \mathrm{Cl}^{-}$, has confirmed the tetragonal bisphenoidal (4) arrangement of the sulphur atoms about the copper ion. After anistropic refinement the following bond lengths were obtained: $\mathrm{Cu}^{-} \mathrm{S}=2.343+0.005, \mathrm{~S}^{-\mathrm{C}}=$ $1.71 \pm 0.02, \mathrm{C}^{-} \mathrm{C}=1.50 \pm 0.02$, and $\mathrm{C}^{-} \mathrm{N}=1.31 \pm 0.02 \AA$. The thioacetamide unit is planar. The bond angles round the copper ion are distorted from those of a regular tetrahedron, the angle bisected by the $\overline{4}$ axis being $103^{\circ} 40^{\prime} \pm 5^{\prime}$.

In 1936 Cox, Wardlaw, and Webster ${ }^{1}$ demonstrated the approximately tetrahedral configuration of the cuprous ion by investigation of the crystal structure of tetrakisthioacetamidecopper(1) chloride. They found that there were two molecules in the tetragonal unit cell ($a=12 \cdot 43 \AA, c=5.52 \AA$, space group $I \overline{4}$), so that the arrangement of the sulphur atoms about the copper ion must be square or tetrahedral. Consideration of a few intensities showed that the square arrangement was impossible.

This paper describes a three-dimensional determination of the structure to measure the lengths of the metal-ligand bonds and of the bonds within the ligand for comparison with those in thioacetamide itself. ${ }^{2}$

Methods and Results

Crystal Data. $-\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{~S}_{4} \mathrm{CuCl}, \quad M=399.54$. Tetragonal, $a=12.449 \pm 0.005 \AA, c=$ $5 \cdot 469 \pm 0.005 \AA, U=847 \cdot 6 \AA^{3}, D_{m}=1.56$ (by flotation), $Z=2, D_{c}=1.56, F(000)=412$. Space group. $I \overline{4}\left(S_{4}{ }^{2}\right.$, No. 82). Cu- K_{α} radiation, single crystal oscillation and Weissenberg photographs, absorption coefficient $\mu=76 \mathrm{~cm} .^{-1}$. Molecular symmetry required, 4 about copper and chlorine.

Determination of an Approximate Structure.-The two copper atoms in the unit cell can be assigned to one of the pairs of special positions with $\overline{4}$ symmetry; we chose these to be $(0,0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. A Fourier synthesis was calculated with phases given by the copper atoms only for $F(h k 0)$ and in the resulting projection of the electron density, peaks appeared at $x / a=\frac{1}{2}$, $y / b=0$ (and $x / a=0, y / b=\frac{1}{2}$), and at $x / a=0.071, y / b=0.129$ (and seven symmetry-related positions); these confirmed the conclusion by Cox et al. ${ }^{1}$ that the chloride ions occupy the
${ }^{1}$ Cox, Wardlaw, and Webster, $J ., 1936,775$.
${ }^{2}$ Truter, $J ., 1960,997$.
positions $\left(\frac{1}{2}, 0, \frac{1}{4}\right)$ and $\left.0, \frac{1}{2}, \frac{3}{4}\right)$ and that the sulphur atoms are in general positions. It was not possible to distinguish the light atoms from the spurious peaks until we had calculated the next synthesis based on the signs given by the copper and chloride ions and the sulphur atoms. Another set of structure factors was calculated for all the atoms except hydrogen, and a third Fourier synthesis was computed; the corresponding electron-density map is shown in Fig. 1. The atoms of one asymmetric unit are shown joined by lines; the following discussion refers to one asymmetric unit. One of the atoms in the overlapping pair which are close enough to be bonded to sulphur must be $\mathrm{C}(1)$ and the other, (3), could then be CH_{3} or NH_{2}, while (2) is NH_{2} or CH_{3}. Refinement by successive Fourier difference syntheses reduced $R(h k 0)$ to 0.19 but did not resolve the overlapping atoms.

To determine the z-co-ordinates the (0 kl) projection was solved. This gave further refinement of both x - and y-co-ordinates because of the tetragonal symmetry, but as the structure is non-centrosymmetrical the phases could not be determined from the copper atom alone. An approximate z-co-ordinate was obtained for the sulphur atom by assuming that the $\mathrm{Cu}-\mathrm{S}$ bonds were arranged in a regular tetrahedron; this led to a value $z / c= \pm 0 \cdot 237$ and gave a reasonable value, $2 \cdot 29 \AA$, for the Cu^{-S} bond length. Preliminary calculation of structure factors showed that the sulphur atom at $x / a=0.077$ and $y / b=0.127$ should have $z / c=+0.237$. For the other atoms z-co-ordinates were derived from reasonable assumptions about the bond

Fig. 1. The electron density projected down [001]. The zero contour is dotted, the intervals of $2 \mathrm{e} / \mathrm{A}^{2}$ are shown by broken lines, and those of $10 \mathrm{e} / \AA^{2}$ by full lines. One quarter of the unit cell is shown.

lengths and angles. Structure factors were calculated and gave an R value of 0.23 ; this was reduced to $0 \cdot 11$ after refinement by Fourier and difference Fourier syntheses. Fig. 2 shows a drawing of the structure in this projection, in which atom (2) overlapped another related to it by symmetry. Comparison of the interatomic distance $\mathrm{C}(1)-(3)=1 \cdot 405 \AA$ and $\mathrm{C}(1)-(2)=$ $1.520 \AA$ with the single bond values for $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bonds suggested that (2) was the CH_{3} group and (3) was the NH_{2} group. These assumptions were used for the first three-dimensional structure factor calculation $[R(h k l)=0.157]$ and subsequent refinement showed that they were correct. Fig. 3 is a drawing of the structure projected along the c-axis.

Three-dimensional Refinement.-Four successive refinements by the method of differential syntheses, with allowance for individual isotropic temperature factors, for each atom, reduced R to 0.108 . It was evident from the curvatures of the electron density in different directions that an allowance for anisotropic thermal motion was required. The isotropic thermal parameter for copper, $B=3.3 \AA^{2}$, was larger than that for the lighter chlorine and sulphur $(B=3.2$ and $3 \cdot 1 \AA^{2}$, respectively), not smaller as would be expected from the difference in atomic masses; this suggested that the scattering power of the copper was probably being reduced by the effect of anomalous dispersion. Accordingly anisotropic refinement was carried out by the method of least squares, the scattering factor curve for copper now being corrected for the real part of the anomalous dispersion. ${ }^{3}$ Even in the most unfavourable cases correction for the imaginary

[^0]part of the anomalous dispersion would introduce a difference between the intensities of (kkl) and ($\overline{h k l}$) of less than 10% and not be detectable by our experimental technique. Six cycles of anisotropic refinement led to no more significant changes in the parameters and R was reduced to 0.088 .

Results.-The observed structure amplitudes and the components of the final calculated structure factors are given in Table 1.

Fig. 2. The structure projected along [100]. The complex ion centred on the copper atom at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and the chloride ion at $\left(\frac{1}{2}, 0, \frac{1}{4}\right)$ are shown by thick circles. Three of the four hydrogen bonds reaching the chloride ion are shown by dotted lines; the fourth is from a nitrogen atom in the unit cell beneath the one shown.

Fig. 4. The bond lengths, in \AA, and angles in the tetrakisthioacetamidecopper(I) ion with the standard deviations in parentheses.

Fig. 3. The structure projected along [001]. The hydrogen bonds are shown by dotted lines, on some of which the distances in \AA are marked.

Table 2 shows the co-ordinates of the atoms in \AA and their standard deviations, σ. Table 3 gives the thermal vibration parameters and their standard deviations; U_{11}, U_{22}, and U_{33} are the mean-square amplitudes of vibration parallel to the crystallographic a^{*}, b^{*}, and c^{*} axes, respectively, and with the values of U_{12}, U_{23}, and U_{13} they define the magnitude and direction of the ellipsoid of vibration.

As shown in Table 3, the motion of the copper atom along the c-axis is greater than that for the sulphur atom; this effect is not consistent with motion of the complex ion as a rigid body, so it is not possible to apply a simple correction for systematic errors caused by rotational

Table 1.
Observed structure amplitudes and calculated structure factors ($F_{c}=A+i B$) $\times 10$.

l	$\left\|F_{0}\right\|$	A	B	l	$\left\|F_{0}\right\|$	A	B	l		A	B	l	$\left\|F_{0}\right\|$	A	B
				5	187	190	-18								
2	803	-784	0	7	44	36	18	0	87	86	0	1	629	416	-463
4	540	514	0					2	163	148	-24	3	326	153	271
6	220	-209	0		211			4	78	68	31	5	147	-51	-132
				1	1160	435	1091								
				3	614	273	-571		1,1,l						
1	749	678	-24	5	317	88	243	0	90	-93	0	0	756	788	0
3	312	321	-23	7	121	46	-99	2	368	346	21	2	131	-132	15
5	84	-64	-10									4	262	255	-29
7	109	100	2									6	76	-69	16
				0	649	-701	0	1		149	256				
				2	620	716	74	3	218	55	-232				
0	731	744	0	4	69	79	-7					0	473	492	0
2	214	29	-136	6	194	183	7	1	251	162	180	2	101	97	-53
4	435	392	31					${ }_{3}^{1}$	111	162	180 -100	4	121	106	-43
6	39	-1	-34		$31 l$							6	41	6	48
				0 2 2	894 517	886 520	0 -118	0							
1	599	482	-185	4	160	-53	128	$\stackrel{8}{2}$		163	-96	1	262	223	-165
3	212	213	-16	6	130	54	-92					3	161	163	0
5	139	131	28					2	$13,1, l$	123	19	5	41	-.38	-20
				1	555	485	388								
0	37	70	0	3	149	80	-102					1	276	138	-237
2	763	740	-92	5	232	211	62	1	107	39	85	3	128	122	80
4	112	-98	41					3	129	73	-85	5	128	123	-56
6	119	124	-15	1	928	767	821		4,1,l						
				3	580	100	-513	1	71	48	51	0	, 504	538	0
1	329	259	-221	5	241	3	228	3	80	76	13	2	268	-234	-95
3	184	170	46									4	294	316	-4
5	216	210	-34	0											
						-980	52	0	51	42	0		0,2,l		
		23		2 4	817 277	988 -246	-12	2	49	48	24	0	137	-129	0 -35
2	186	176	47	6	225	217	10		5,1,l			2	329 44	-15	-35
4	277	258	-64					0	236	187	0			-15	-16
6	86	94	41	0	185	35	0	2	49	-38	21				
				2	571	529	-150					1	60	53	39
$\begin{aligned} & 1 \\ & 3 \end{aligned}$	438 483	198 203	-428 -391	4	47	26	20	0	359	367	0	3	148	163	-31
5	483	104	- 391	6	113	97	-9	2	137	88	109	5	29	43	17
	226	104	-188					4	459	355	-145				
								6	110	53	97		1,2,l		
0	484	543	0	1		196	12					1	209	195	-69
2	127	37	123	3		192	52 -16	1	581	238	-505	3	14	13	-2
4	184	155	-73					3	552	244	391				
6	58	-10	52		612			5	313	204	-178		2,l		
				1	390	189	-327					0		110	0
				3	309	${ }_{261}$	-108					2	102	103	-15
1	402	183	-365	5	157	110	-77	1	919	597	767	4	49	51	36
3	308	127	281					3	430	171	-342				
5	132	47	-125					5	218	44	193		2,28		
				0	48	50	0					0	88	73	0
	0,l			2	447	388	141					2		141	-21
0	126	111	0	4	49	37	-16	0	433	387	0				
2	115	122	62	6	54	72	1	2	654	597	109		, 2		
4	94	110	21					4	94	-99	20			122	20
					711			6	115	108	-15	3	41	21	-39
	0,l			0	139	156	0								
1	244	170	152	2	453	371	39						3,2,l		
3	75	63	-35	4	133	49	-121	0	1023	1097	0	1	115	50	-83
5	45	46	37	6	112	49	89	2	30	29	27	3	91	83	74
								4	237	210	105				
	0,l							6	72	-19	-78		2,l		
	252	255	0	1	365	348	-79					0	20	7	0
2	74	65	-38	3	214	137	136					2	103	108	4
4	37	26	46	5	90	-43	-61	1	633	641	-81				
								3	27	15	32		14,2,l		
	0,l				812			5	78	77	-8	0	263	234	0
	135	96	99	1	472	280	-338								
3	114	56	-114	3	224	114	165		$2 l$				2,1		
				5	133	63	-103	1	267	284	-29	1	65	48	-36
	0,l							3	257	246	45				
0	160	171	0					5	55	57	-10		15,2,l		
2	42	-57	-20	0	478	510	0					1	134	74	-55
				2		23	-12								
	0,l			4	124	118	-30	0	135	139	0				
1	112	41	-97					2	478	443	-87	0	244	-170	0
					911			4	18	-16	22	2	722	714	50
	0,l			0		-93	0	6	97	93	-17	4	100	-24	-95
0	129	156	0	2	328	296	14					6	127	110	53
				4		51	-59		2l						
								0	701	880	0				
0	730	769	0		,1,l			2	194	-146	37	1	608	563	-6
2	177	163	-7	1	190	130	128	4	355	334	-33	3	118	117	44
4	328	311	-31	3	185	139	-120	6	60	-61	16	5	68	73	-13
6	67	-5	38	5	55	36	55								
													33		
					10,1,l			1	315	267	-142	1	530	183	470
1	118	-103	-18	1	220	96	192	3	199	161	81	3	442	307	-220
3	548	462	-11	3	155	114	-78	5	66	79	-32	5	161	92	129

Table 1. (Continued)

Table 2.
Atomic co-ordinates.

	x / a	y / b	z / c	X	$\sigma(X)$	Y	$\sigma(Y)$	Z	$\sigma(Z)$
$\mathrm{Cu} \ldots$	$0 \cdot 0000$	0.0000	$0 \cdot 0000$	$0.000 \AA$	-	$0.000 \AA$	-	$0.000 \AA$	
Cl	$0 \cdot 0000$	0.5000	$0 \cdot 7500$	0.000	-	6.2245	-	$4 \cdot 1018$	-
S	0.0758	0.1273	$0 \cdot 2651$	0.9435	$0.0026 \AA$	1.5853	0.0023 A	$1 \cdot 4496$	0.0028 A
C(1)	$0 \cdot 0979$	0.2442	$0 \cdot 1137$	1.219	0.009	3.040	0.008	$0 \cdot 622$	0.010
C(2)	0-1506	0.3373	0.2348	1.875	0.011	4•199	0.010	1.284	0.015
N	$0 \cdot 0657$	0.2575	-0.1094	0.818	0.010	3.205	0.011	-0.598	0.011

Table 3.
Thermal parameters (all units are $10^{-4} \AA^{2}$).

	U_{11}	σ	U_{22}	σ	U_{33}	σ	U_{12}	σ	U_{23}	σ	U_{13}	σ
Cu	379	7	379	7	523	16	0	-	0	-	0	-
Cl	413	12	413	12	625	31	0	-	0	-	0	-
S.	563	13	378	10	405	11	-22	8	-3	10	-14	11
C(1)	416	41	322	35	383	44	60	34	-62	37	39	40
C(2)	588	53	385	43	743	79	-205	40	-56	54	-196	58
N \ldots...	745	59	612	54	476	52	-20	38	60	49	-96	51

oscillation. Nevertheless, to render these results comparable with those for thioacetamide, ${ }^{2}$ we carried out an analysis of the molecular vibration parameters for the thioacetamide group alone. Cruickshank's revised procedure ${ }^{4}$ was used, the computation being carried out on the Pegasus computer with programmes written by Mr. A. Bujosa and Dr. D. W. J. Cruickshank. ${ }^{5}$ From the internal consistency, the approximation that the thioacetamide group moved as a rigid body was as satisfactory as for the uncombined molecule and the calculated corrections were closely similar, being $+0.018 \AA$ for $\mathrm{C}^{-} \mathrm{S},+0.015 \AA$ for $\mathrm{C}-\mathrm{C}$, and $+0.014 \AA$ for $\mathrm{C}-\mathrm{N}$. The bond lengths and angles are shown in Fig. 4 together with an indication of their reliability;
${ }^{4}$ Cruickshank, Acta Cryst., 1961, 14, 896.
${ }^{5}$ Cruickshank, Pilling, and (in part) Bujosa, Lovell, and Truter, "Computing Methods and the Phase Problem in X-ray Crystal Analysis," Pergamon Press, 1961, p. 32.
although the standard deviations calculated from those of the co-ordinates given in Table 2 are only $0.003 \AA$ for $\mathrm{Cu}-\mathrm{S}, 0.009 \AA$ for $\mathrm{C}^{-} \mathrm{S}, 0.014 \AA$ for $\mathrm{C}^{-} \mathrm{C}$, and $0.015 \AA$ for $\mathrm{C}^{-} \mathrm{N}$, we have increased them to allow for the uncertainty in the correction for rotational oscillation. The $\mathrm{Cu}^{-} \mathrm{S}$ bond length corresponds to the corrected position for sulphur and is $0.003 \AA$ shorter than the uncorrected one.

The plane through the thioacetamide group is defined by

$$
0.8852 X-0.03388 Y-0.3188 Z+0.1646=0
$$

The deviations from this plane, $+0.016 \AA$ for $\mathrm{C}(1)$ and $-0.002 \AA,-0.005 \AA$, and $-0.005 \AA$ for S, C, and N , respectively, are not statistically significant. The copper atom lies $0.165 \AA$ from this plane so that the $\mathrm{Cu}-\mathrm{S}$ bond makes an angle of 86° with the normal to the plane.

Each nitrogen atom has one contact at $3 \cdot 22 \AA$ to a chloride ion and one of $3 \cdot 41 \AA$ to a sulphur atom, and the angles subtended at the nitrogen are: $\mathrm{C}-\mathrm{N} \cdot \mathrm{Cl} 115 \cdot 0^{\circ}, \mathrm{C}-\mathrm{N} \cdots \mathrm{S}^{\prime} 111 \cdot 6^{\circ}$ and $\mathrm{Cl} \cdot \mathrm{N} \cdot \mathrm{M}^{\prime} 112 \cdot 6^{\circ}$.

Each chloride ion is surrounded by four NH_{2} groups at $\mathbf{3 . 2 2} \AA$, forming a very flattened tetrahedron, the $\mathrm{N} \cdots \mathrm{Cl} \cdots \mathrm{N}^{\prime \prime}$ angle which is bisected by the $\overline{4}$ axis being $152 \cdot 4^{\circ}$; these contacts probably represent hydrogen bonds and are shown in Figs. 2 and 3. The only other interatomic distance of less than $3.5 \AA$ between atoms not bonded to a common atom was $3.36 \AA$ for $\mathrm{Cu}-\mathrm{N}$.

Discussion

The structure consists of approximately tetrahedral complex cations and chloride anions held by electrostatic forces and by hydrogen bonds. The hydrogen bonding provides a probable explanation for the thermal motion of the chloride ions; the $\mathrm{NH} \cdots \mathrm{Cl} \cdots \mathrm{HN}$ bonds (Fig. 2) have a larger component in the $a b$-plane than parallel

Fig. 5. The bond lengths, in \AA, and angles of thioacetamide, with the standard deviations in parentheses.
to the c-axis, so that the chloride ion is more restricted in its movement in the plane than perpendicular to it. The difference $0.021 \AA$ between U_{11} and U_{33} for chlorine is statistically significant, being 6.5 times the corresponding standard deviation. The significant deviation of the $\mathrm{S}^{-} \mathrm{Cu}^{-} \mathrm{S}^{\prime \prime}$ angle (which is bisected by the $\overline{4}$ axis) from that for a regular tetrahedron may also be attributable to a hydrogen bond from the NH_{2} group to a neighbouring sulphur atom, as shown in Fig. 3. The $\mathrm{NH}_{2} \cdots \mathrm{~S}$ distance is comparable with those ($3 \cdot 40-3.50 \AA$) found for the corresponding bonds in thioacetamide. ${ }^{2}$ While in thioacetamide the two $\mathrm{N} \cdots \mathrm{S}$ bonds and the $\mathrm{N}-\mathrm{C}$ bond were approximately coplanar, supporting the postulate of $s p^{2}$-hybridisation for the nitrogen atom, in this complex the three bonds round nitrogen are far from coplanar, being disposed along three of the four tetrahedral directions.

Within experimental error, the thioacetamide ligand has the same dimensions as in the uncomplexed molecule ${ }^{2}$ (Fig. 5), so that, in spite of the apparently pyramidal environment of nitrogen, the simplest postulate is that the hybridisation of all the atoms is unchanged on complex formation. This implies that the sulphur is bonded to the copper by a lone pair of electrons in approximately the position they occupy in the free molecule. If we assume that in thioacetamide the sulphur atom is $s p^{2}$-hybridised, its six electrons can be disposed as 1 in a σ-bond to carbon, 1 in a p_{z}-orbital forming a π-bond with carbon, and 2 in each of the other two $s p^{2}$-orbitals as lone pairs. When one lone pair forms the $\mathrm{S}-\mathrm{Cu}$ bond, this bond should lie in the plane of the thioacetamide molecule and the $\mathrm{C}-\mathrm{S}-\mathrm{Cu}$ angle should be less than 120° because the repulsion between the other lone pair and the copper or carbon atoms would be greater than that between these two atoms; in fact,
the bond does not lie quite in the plane, it makes an angle to 86° to the normal, and the bond angle is less than 120°.

The arrangement of ligands round the copper supports the postulate that the orbitals used by this atom are formed by hybridisation of the $4 s$ - and the three $4 p$-orbitals. Although the $\mathrm{Cu}-\mathrm{S}$ distance has been determined very accurately, this may not represent a fixed bond length. The thermal vibration parameters suggest that, parallel to the c-axis, the copper and sulphur atoms are moving essentially independently.

That the $\mathrm{Cu}-\mathrm{S}$ distance may represent the average (either a time-average or a spaceaverage) separation rather than a fixed bond length is supported by some interesting discrepancies in the literature. For example, in tristhioureacopper(I) chloride ${ }^{6}$ considerable and significant variations ($2 \cdot 31-2 \cdot 42 \AA$) were found between crystallographically independent $\mathrm{Cu}-\mathrm{S}$ bond lengths. Even for cuprous sulphide, $\mathrm{Cu}_{2} \mathrm{~S}$, the structure of the roomtemperature form is complicated ${ }^{7}$ and has not been solved, while the form stable above 105°, although the subject of controversy, is apparently deficient in copper and disordered. For cupric sulphide ${ }^{8}$ the Cu^{-S} distances vary from $2 \cdot 19$ to $2 \cdot 35 \AA$ and the arrangement cannot be simply attributed to the effect of the d^{9}-electron shell. These different distances may correspond to different amounts of ionic, covalent, and metallic character in the bonds; the thermal motion of the tetrakisthioacetamidecopper(i) ion suggests that this $\mathrm{Cu}-\mathrm{S}$ bond also is not purely covalent.

Experimental

Tetrakisthioacetamidecopper(I) chloride, prepared by Kurnakow's method, ${ }^{9}$ crystallised from water as pale yellow tetragonal needles.

The unit-cell dimensions were measured by the Straumanis method. For intensity measurement about the c-axis a needle 0.25 mm . in diameter was used, and for measurements about the a-axis a needle was cut to 0.25 mm . in length; no absorption correction was made.

Equi-inclination Weissenberg photographs were taken about the a - and c-axes up to $8 k l$ and $h k 3$; 509 independent reflections gave measurable intensities. A multiple-film technique was used and the intensities of the spots were estimated visually with the aid of a calibration strip. Lorentz and polarisation factors were applied by use of a Cochran chart. Approximately absolute values of F^{2} were obtained by comparison with the absolute values quoted by Cox et al. ${ }^{1}$ for ($00 l$), ($h h 0$), and ($h 00$); during refinement the scale was one of the parameters. Extinction was corrected empirically from the relation $I=I_{0} \exp \left(\alpha I_{\text {obs }}\right)$; the values of I were those calculated during isotropic refinement. A plot of $\log I / I_{\text {obs }}$ against $I_{\text {obs }}$ for reflections with $\sin ^{2} \theta \leqslant 0.077$ gave two straight lines, one corresponding to $\alpha=3.54 \times 10^{-5}$ for values from the crystal set about the c-axis and the other with $\alpha=2.66 \times 10^{-5}$ for the other crystal.

Three-dimensional isotropic refinement was carried out on the Manchester University electronic computer with programmes devised by Dr. D. W. J. Cruickshank and Miss D. E. Pilling ${ }^{5}$ modified for $I \overline{4}$ by Mr. R. Shiono; the method of differential synthesis was used, a back-shift correction applied for termination of series errors, and an " n " shift (determined empirically as $n=1.7$) to allow for the phase-angle effect in a non-centrosymmetrical structure. The scattering factors used were those of McWeeny ${ }^{10}$ for C and N , of Berghuis et al. ${ }^{11}$ for Cu^{+} and Cl^{-}, and of James and Brindley ${ }^{12}$ for S . Anisotropic refinement was carried out by the method of least squares on the Leeds University Ferranti Pegasus computer with programmes devised by Dr. D. W. J. Cruickshank and Miss D. E. Pilling. ${ }^{5}$ The function minimised was $R^{\prime}=\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where the weighting factor, w, was $1 /\left|F_{o}\right|$. The scattering factors of Berghuis et al. ${ }^{11}$ were used for $\mathrm{C}, \mathrm{N}, \mathrm{Cl}^{-}$, and Cu^{+}. with a correction ${ }^{3}$ for the real part of the anomalous dispersion of copper; Tomiie and Stam's scattering factor ${ }^{13}$ was used for sulphur.

[^1]We thank our colleagues ${ }^{5}$ for the use of their programmes, Mr. R. Shiono and Mr. J. F. P. Donovan for running the computations on the Manchester University electronic computer, and Miss M. Jowitt and Mrs. B. Hawkshaw for those on the Leeds University computer; we are grateful to the directors of the computing laboratories of Manchester and Leeds Universities for the use of their facilities. One of us (K. W. R.) is indebted to the University of Leeds for a Post-graduate research grant. Part of the cost of the computing was met by a grant from the D.S.I.R. and some of the equipment used was provided by the Royal Society and Imperial Chemical Industries Limited.

Department of Inorganic and Structural Chemistry, The University of Leeds.

[^0]: ${ }^{3}$ Dauben and Templeton, Acta Cryst., 1955, 8, 841.

[^1]: ${ }^{6}$ Knobler, Okaya, and Pepinsky, Z. Krist., 1959, 111, 385.
 ${ }^{7}$ Buerger and Buerger, Amer. Min., 1944, 29, 55.
 ${ }^{8}$ Oftedal, Z. Krist., 1932, 83, 9.
 ${ }^{9}$ Kurnakow, Ber., 1894, 27, 46.
 ${ }^{10}$ McWeeny, Acta Cryst., 1951, 4, 51.
 ${ }^{11}$ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
 12 " International Tables for the Determination of Crystal Structures," Borntraeger, Berlin, 1935.
 ${ }^{13}$ Tomiie and Stam, Acta Cryst., 1958, 11, 126.

